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Abstract. Recently, various cross sections of e+e− annihilation into hadrons were accurately measured
in the energy range from 0.37 to 1.39 GeV with the CMD-2 detector at the VEPP-2M collider. In the
π+π− channel a systematic uncertainty of 0.6% has been achieved. A Monte-Carlo Generator Photon Jets
(MCGPJ) was developed to simulate events of Bhabha scattering as well as production of two charged pi-
ons, kaons and muons. Based on the formalism of structure functions, the leading logarithmic contributions
related to the emission of photon jets in the collinear region are incorporated into the MC generator. Radia-
tive corrections (RC) in the first order of α are accounted for exactly. The theoretical precision of the cross
sections with RC is estimated to be better than 0.2%. Numerous tests of the program as well as a comparison
with other MC generators and CMD-2 experimental data are presented.

1 Introduction

The cross sections of e+e− annihilation into hadrons are
very important in various problems of particle physics and,
in particular, they are required for the evaluation of the
hadronic contribution to the anomalous magnetic moment
of the muon, aµ = (g−2)µ/2. The recent measurement of
aµ at BNL [1] led to a new world average differing by 2.7
standard deviations from its theoretical evaluation. One of
the main ingredients in the theoretical prediction for aµ
is the hadronic contribution related via a dispersion inte-
gral to the cross section of e+e− annihilation into hadrons.
In the case of ahadµ , the VEPP-2M energy range gives the
major contribution both to the hadronic vacuum polariza-
tion contribution itself and to its uncertainty [2, 3]. This
uncertainty is dominated by systematic errors of the ex-
perimental values ofR(s) which are used as an input to the
integral with the proper kernel function [4]:

ahadµ =

(
αmµ

3π

)2 ∞∫

4m2π

R(s)K(s)

s2
ds .

The quantityR(s) is defined asR(s) = σ(e+e−→ hadrons)
/σ(e+e−→ µ+µ−) and at high energies can be calculated
within the QCD framework, whereas at low energies ex-
perimental data are required. A numerical computation of
this integral can be found elsewhere[2] and in relative uni-
ties its evaluation yields the result ∼ 60 ppm.
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The goal of the new BNL experiment [5] is to meas-
ure the anomalous magnetic moment of the muon with
the relative accuracy ∼ 0.25 ppm. To reduce the current
systematic error of the hadronic contribution to ahadµ at
least to the same level, the theoretical precision of the cross
sections with radiative corrections (RC) should be better
than 0.3% as it follows from a simple estimation: 60 ppm×
0.3%∼ 0.2 ppm. This short observation shows why know-
ledge of the cross sections e+e− annihilation into hadrons
with high precision is extremely important.
The detection efficiency, background conditions and

criteria of event selection from the raw data differ for spe-
cific e+e− annihilation modes. Therefore, expressions for
the cross sections with RC on which the MC generator is
based should completely have a differential form with re-
spect to the kinematic variables of final particles. In this
case the influence of the selection criteria as well as the
trigger efficiency and many other specific resolutions of the
detector can be naturally incorporated in a MC generator.
During the last thirty years considerable efforts were

devoted to elucidate theoretical understanding of the ac-
curacy of cross sections with RC, particularly in the case
of e+e− and π+π− pair production at low energies. Ra-
diatively corrected cross sections for annihilation channels
with an accuracy of about 0.1%were obtained in [6]. Unfor-
tunately, expressions for these cross sections do not contain
the angular distributions for the emitted photons and, as
a result, it is not possible to reconstruct the kinematics of
the final particles correctly. On the other hand, the differ-
ential cross sections were obtained in [7], but their relative
accuracy is about 1%, since only O(α) QED corrections
were taken into account.
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The work [8] is based in part on a combination of
the approaches [6, 7] mentioned above. To achieve the ac-
curacy ∼ 0.2%, higher order radiative corrections were
taken into account by means of the structure function (SF)
formalism [6]. It involves a convolution of the boosted
Born cross section with the electron (positron) SF, which
describes the leading effects due to emission of pho-
tons in the collinear region as well as radiation of e+e−

pairs. These enhanced contributions are proportional to
(α/π)n lnn(s/m2e), n = 1, 2, ... and are referred to as the
leading ones. Moreover, in the smoothed representations of
the SF [6] a certain part of these corrections is exponen-
tiated and evaluated in all powers of n. The non-leading
contributions proportional to (α/π) are incorporated ex-
actly according to [6] by means of a so-called K -factor.
The next-to-leading contributions of the second order
(α/π)2 ln(s/m2e) ∼ 0.01% are fortunately small and can
be omitted, keeping in mind the intended precision tag
of 0.2%.
The vacuum polarization effects in the photon propa-

gator are treated as in [8] for the lepton channels. These
effects are not included in RC for the hadronic modes
according to the generally accepted agreement [10]. The
emission of one hard photon at a large angle is described
by a differential formula, which allows one to take into ac-
count specific experimental conditions and cuts. Based on
numerical calculations, which will be given below, it was
established that the O(α) radiative corrections together
with photon jet radiation in a collinear region are sufficient
to achieve a relative precision of the cross sections about
∼ 0.2%.
The purpose of this paper is to describe the Monte-

Carlo Generator Photon Jets (MCGPJ) which simulates
the processes e+e−→ e+e−, µ+µ−, π+π−, K+K− and
KLKS. This generator was used while CMD-2 experimen-
tal data were processed. The MCGPJ code has a modular
structure that simplifies the implementation of additional
hadronic modes as well as the replacement of matrix elem-
ents of the current cross sections by a new one. The ef-
fects of the final state radiation (FSR) for the channels
µ+µ−, π+π−,K+K− have been incorporated into the pro-
gram. The pions were assumed to be point-like objects, and
scalar QED was applied to calculate virtual, soft and hard
photon emission by charged pions (kaons).
The relevant formulae for the cross sections with RC of

order α are collected here from many other papers. This is
done specially to have the possibility of quantifying the dif-
ference between cross sections due to radiation of one pho-
ton and photon jets in the collinear region. On the other
hand, some expressions for RC are revisited in the present
paper and explicit analytical formulae will be presented in
a form convenient for the MC generator construction.

2 Monte-Carlo generator for events
of Bhabha scattering at large angles

The boosted Born cross section of the process e−(z1p−)+
e+(z2p+)→ e−(p1)+ e+(p2), corrected for vacuum polar-

ization factors in the s and t channels, when initial particles
lose some energy by radiation of photon jets in the collinear
region, has the following form [8] in the CMS frame:

dσ̃e
+e−→e+e−
0 (z1, z2)

dΩ1
=
4z1z2α

2

a2s̃

(
s̃2+ ũ2

2t̃2|1−Π(t̃)|2

+
t̃2+ ũ2

2s̃2|1−Π(s̃)|2
+Re

{
ũ2

s̃t̃

1

(1−Π(s̃))(1−Π(t̃))

})
,

(1)

where z1 and z2 are the electron and positron fraction en-
ergies after radiation of photon jets (z1,2 = ε1,2/εbeam),
Π(s̃) and Π(t̃) are the vacuum polarization operators in
the photon propagators in the s and t channels, respec-
tively. The Mandelstam variables in the Lab and CMS
are defined as usual: s= 2p−p+, t=−2p−p1, u=−2p−p2,
s̃ = sz1z2, t̃ = −sz1Y1(1− c1)/2, ũ = −sz2Y1(1 + c1)/2,
s1 = 2p1p2, t1 =−2p+p2, u1 =−2p+p2, c1 = cos θ1, where
θ1 is the polar angle of the final electron with respect to
the electron beam direction, Y1 and Y2 are the relative
energies of final e− and e+. The energy-momentum con-
servation law allows one to reconstruct the kinematics of
final particles and to find these energies and the positron
polar angle θ2: z1+z2 = Y1+Y2 is for energy conservation;
z1− z2 = Y1 cos θ1+Y2 cos θ2 for momentum conservation
along the Z -axis; Y1 sin θ1 = Y2 sin θ2 for momentum con-
servation in the plane perpendicular to the Z-axis. From
these equations one can find that

Y1 =
2z1z2
a
,

Y2 =
(z21 + z

2
2)− (z

2
1− z

2
2)c1

a
,

c2 =
(z21− z

2
2)− (z

2
1+ z

2
2)c1

(z21+ z
2
2)− (z

2
1− z

2
2)c1

,

where a= z1+ z2− (z1− z2)c1 . (2)

The expression for the differential cross section with
one photon emission in the reaction e−(p−)+ e

+(p+)→
e−(p1)+ e

+(p2)+γ(k), was obtained in [7] (see also refer-
ences therein) and reads

dσe
+e−→e+e−γ
hard =

α3

2π2s
Re
+e−→e+e−γ
hard

d3p1
ε1

d3p2
ε2

d3k

ω

× δ(4)(p−+p+−p1−p2−k) , (3)

where ε1, ε2, and ω are the energies of the final state
electron, positron and photon, respectively; δ-function pro-
vides the energy-momentum conservation.

The expression for the quantity Re
+e−→e+e−γ
hard which

contains the vacuum polarization effects in photon propa-
gators was derived in [8]:

Re
+e−→e+e−γ
hard =

(WT )Π
4

−
m2e
χ′+
2

(
s2+(s+ t)2

2t2(1−Π(t))2

+
t2+(s+ t)2

2s2|1−Π(s)|2

+Re

{
(s+ t)2

st(1−Π(s))(1−Π(t))

})
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−
m2e
χ′−
2

(
s2+(s+ t1)

2

2t21(1−Π(t1))
2
+
t21+(s+ t1)

2

2s2|1−Π(s)|2

+Re

{
(s+ t1)

2

st1(1−Π(s))(1−Π(t1))

})

−
m2e
χ2+

(
s21+(s1+ t)

2

2t2(1−Π(t))2
+
t2+(s1+ t)

2

2s21|1−Π(s1)|
2

+Re

{
(s1+ t)

2

s1t(1−Π(s1))(1−Π(t))

})

−
m2e
χ2−

(
s21+(s1+ t1)

2

2t21(1−Π(t1))
2
+
t21+(s1+ t1)

2

2s21|1−Π(s1)|
2

+Re

{
(s1+ t1)

2

s1t1(1−Π(s1))(1−Π(t1))

})
,

(4)

where χ± = kp± and χ
′
± = kp1,2. The quantity (WT )Π

describes the process with one hard photon emission and
gives the dominant contribution outside the collinear
region [8]:

(WT )Π =
SS

|1−Π(s)|2sχ′−χ
′
+

+
S1S1

|1−Π(s1)|2s1χ−χ+

−
TT

|1−Π(t)|2tχ+χ′+
−

T1T1

|1−Π(t1)|2t1χ−χ′−

+Re

[
TT1

(1−Π(t))(1−Π(t1))tt1χ−χ′−χ+χ
′
+

−
SS1

(1−Π(s))(1−Π(s1))∗ss1χ−χ′−χ+χ
′
+

+
TS

(1−Π(t))(1−Π(s))tsχ′−χ+χ
′
+

+
T1S1

(1−Π(t1))(1−Π(s1))t1s1χ−χ′−χ+

−
T1S

(1−Π(t1))(1−Π(s))t1sχ−χ′−χ
′
+

−
TS1

(1−Π(t̃))(1−Π(s̃1))ts1χ−χ+χ′+

]
, (5)

where the following notation has been used:

SS = S1S1 = t
2+ t21+u

2+u21 ,

TT = T1T1 = s
2+ s21+u

2+u21 ,

SS1 = (t
2+ t21+u

2+u21)

× (tχ+χ
′
++ t1χ−χ

′
−−uχ+χ

′
−−u1χ−χ

′
+) ,

TT1 = (s
2+ s21+u

2+u21)

× (uχ+χ
′
−+u1χ−χ

′
++ sχ

′
−χ
′
++ s1χ−χ+) ,

TS =−
1

2
(u2+u21)(s(t+ s1)+ t(s+ t1)−uu1) ,

TS1 =−
1

2
(u2+u21)(t(s1+ t1)+ s1(s+ t)−uu1) ,

T1S =
1

2
(u2+u21)(t1(s+ t)+ s(s1+ t1)−uu1) ,

T1S1 =
1

2
(u2+u21)(s1(s+ t1)+ t1(s1+ t)−uu1) . (6)

The main contribution to the cross section due to
photon radiation comes from the collinear region, where

the cross section exhibits very steep behavior [11]. The
collinear region is a part of the angular phase-space with
four narrow cones. see Fig. 1, surrounding the directions of
motion of the initial and final particles. The emitted pho-
ton should be inside these cones with an angle 2θ0. The
angle θ0 should obey the follow restrictions: 1/γ� θ0� 1,
where γ = ε/me. It serves as an auxiliary parameter and
usually its value is taken at about ∼ 1/

√
γ. The cross

section integrated inside these narrow cones according
to [8] is

dσe
+e−→e+e−γ
coll

dΩ1
=
α

π

1∫
∆

dx

x

{
2
dσ̃e

+e−→e+e−
0 (1, 1)

dΩ1

×

[(
z+
x2

2

)(
L−1+ ln

θ20z
2

4

)
+
x2

2

]

+

[
dσ̃e

+e−→e+e−
0 (z, 1)

dΩ1

+
dσ̃e

+e−→e+e−
0 (1, z)

dΩ1

]

×

[(
z+
x2

2

)(
L−1+ ln

θ20
4

)
+
x2

2

]}
,

(7)

where L= ln(s/m2e), z = 1−x and the boosted Born cross
section is defined in (1). The auxiliary parameter∆=∆ε/ε
(∆� 1) serves as a separator of hard and soft photons,
and ε is the beam energy. The terms proportional to
(α/π)(L−1) are accounted for in the SF [6] and therefore
should be removed from this expression to eliminate double
counting.
The remaining four terms can be interpreted as the so-

called compensators which cancel the dependence of the
total cross section on the auxiliary parameter θ0 when they
are summed with the cross section (3) describing one hard
photon emission outside cones.
Collecting all the discussed above terms into one for-

mula we get the complete expression for the master for-
mula describing the process e+e−→ e+e−+nγ, which can

Fig. 1. Photon jets are inside four narrow cones with an open-
ing angle 2θ0
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be presented as

dσe
+e−→e+e−+nγ

dΩ1
=

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3

1∫
0

dx4

×
dσ̃e

+e−→e+e−
0 (z1, z2)

dΩ1
×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×
(
1+
α

π
K̃SV

)
Θ(cuts)

+
α

π

1∫
∆

dx1
x1

[(
z1+

x21
2

)
ln
θ20
4
+
x21
2

]

×
dσ̃e

+e−→e+e−
0 (z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2
x2

[(
z2+

x22
2

)
ln
θ20
4
+
x22
2

]

×
dσ̃e

+e−→e+e−
0 (1, z2)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx3
x3

[(
z3+

x23
2

)
ln
θ20z

2
3

4
+
x23
2

]

×
dσ̃e

+e−→e+e−
0 (1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx4
x4

[(
z4+

x24
2

)
ln
θ20z

2
4

4
+
x24
2

]

×
dσ̃e

+e−→e+e−
0 (1, 1)

dΩ1
Θ(cuts)

+
4α

π

dσ̃e
+e−→e+e−
0 (1, 1)

dΩ1
ln
u

t
ln∆

+
α3

2π2s

∫

k0>∆ε
θγ>θ0

Re
+e−→e+e−γ
hard

×
dΓ

dΩ1
Θ(cuts) , (8)

where x1,2,3,4 are the relative energies of photon jets emit-
ted along the initial and final particles; z1,2,3,4 = 1−x1,2,3,4
are the energy fractions of electrons and positrons after ra-
diation of photon jets; Θ(cuts) is a step-function equal to
1 (0) if the kinematics variables obey (or not) the selection
criteria; the expression for K̃SV(θ̃1) can be found in [7, 8].
More details concerning the implementation of the SF for-
malism as adopted in the present paper can be found in [6].
The SF approach provides an essential improvement of

accuracy for the Bhabha cross section by taking into ac-
count radiation of photon jets in the collinear region. These
improvements as well as others performed in [8] are sum-
marized here.

1. The radiation of photon jets (enhanced contributions)
is taken into account by means of the SF formalism.

2. To combine the cross sections, describing radiation
of one hard photon inside and outside narrow cones,
the four compensators are embedded into the master
formula (8).

3. The boosted Born cross section contributes to the total
cross section in conformity with SF weights in the mas-
ter formula (8).

4. The vacuum polarization effects inserted into all pho-
ton propagators exactly.

5. Non-leading contributions of order α are accounted for
by means of the so-calledK -factor.

The integration limits of the first term in (8) were di-
vided in two parts from 0 to ∆ε and from ∆ε to the max-
imal jet energy. As a result, the four-fold integral splits
into sixteen parts. Those of them with one photon jet ra-
diation are merged in a proper way with compensators in
the master formula. In this case, the total cross section
is subdivided into seventeen cross sections, all with their
own specific kinematics: the number of photon jets and the
radiation directions. The first contribution accounting for
effects due to soft and virtual radiative corrections is given
by

dσe
+e−→e+e−+nγ
1

dΩ1
=

∆∫
0

∆∫
0

∆∫
0

∆∫
0

dx1dx2dx3dx4

×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×
(
1+
α

π
K̃SV

) dσ̃e+e−→e+e−0 (z1, z2)

dΩ1

−
4α

π
ln

(
u

t

)

× ln∆
dσ̃e

+e−→e+e−
0 (1, 1)

dΩ1
. (9)

The photon jet energy emitted by each charged particle
can be up to ∆ε. This part also contains the contribu-
tion due to production of virtual and soft real e+e− pairs
if 2me <∆ε.
The next four terms represent the contribution to the

cross section with one hard jet emission along the motion
of any charged particle, supplied with the virtual and soft
leading logarithmic corrections. One of these terms with
the relevant compensator is

dσe
+e−→e+e−+nγ
2

dΩ1
=

1∫
∆

∆∫
0

∆∫
0

∆∫
0

dx1dx2dx3dx4

×D(z2, s)D(z3, s̃)D(z4, s̃)

×
dσ̃e

+e−→e+e−
0 (z1, z2)

dΩ1

×

[
D(z1, s)

(
1+
α

π
K̃SV
)
+
α

π

1

x1

×

((
z1+

x21
2

)
ln
θ20
4
+
x21
2

)]
Θ(cuts) .

(10)
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The other similar terms can be written out in the same way
by the permutation of limits between integrals.
The next six terms represent the contribution to the

cross section when two jets are emitted simultaneously
along momenta of any two charged particles. One of these
terms reads

dσe
+e−→e+e−+nγ
6

dΩ1
=

1∫
∆

1∫
∆

∆∫
0

∆∫
0

dx1dx2 dx3dx4

×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×
dσ̃e

+e−→e+e−
0 (z1, z2)

dΩ1

×

(
1+
α

π
K̃SV

)
Θ(cuts) . (11)

The other similar terms have an identical structure and are
obtained by permutation of the limits.
The following four terms represent the contribution to

the cross section when three photon jets are emitted along
momenta of any three charged particles. One of these terms
is given by

dσe
+e−→e+e−+nγ
12

dΩ1
=

1∫
∆

1∫
∆

1∫
∆

∆∫
0

dx1dx2 dx3dx4

×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×
dσ̃e

+e−→e+e−
0 (z1, z2)

dΩ1

×

(
1+
α

π
K̃SV

)
Θ(cuts) . (12)

The cross section with emission of four jets along the
momenta of each initial and final particle is written

dσe
+e−→e+e−+nγ
16

dΩ1
=

1∫
∆

1∫
∆

1∫
∆

1∫
∆

dx1dx2 dx3dx4

×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×
dσ̃e

+e−→e+e−
0 (z1, z2)

dΩ1

×

(
1+
α

π
K̃SV

)
Θ(cuts) . (13)

The cross section with one hard photon emission out-
side the collinear region reads

dσe
+e−→e+e−γ
17

dΩ1
=
α3

2π2s

∫

k0>∆ε
θγ>θ0

Re
+e−→e+e−+γ
hard

×
sx1xdxdΩγ

8(1−x sin2 ψ/2)
Θ(cuts) , (14)

where ψ is the angle between the momenta directions of
photon and final electron.

The cross section calculation was performed by the
Monte-Carlo method. The cutoff energy ∆ε was chosen
at ten electron masses to optimize the efficiency of event
simulation (∆ =∆ε/ε∼ 1%). Since the master formula is
singular in some variables, the main of them have been iso-
lated: photon energy and emission angle were generated

according to functions 1/ω(ε−ω) and 1/(1−β2e cos
2 θγ),

respectively. The main contribution to the Bhabha cross
section comes from the t channel and it was generated by
the function 1/(1− cosθ1)2.
The selection criteria adopted here for the simulated

events are similar to those used in the CMD-2 data analy-
sis [3], and they are

– the acollinearity cut in the scattering plane is |∆θ| <
0.25 rad, where ∆θ = θ1+ θ2−π;
– the same for azimuthal plane, |∆φ| < 0.15 rad, where
∆φ= |φ1−φ2|−π;
– the angular acceptance is 1.1 < θaver < π−1.1, where
θaver = (θ1− θ2+π)/2;
– p⊥1,2 > 90MeV/c.

Below, if nothing specially is told about selection criteria
the latter will be taken in mind.
The MCGPJ program consists of two main stages. In

the first stage with a soft selection criteria all majorants for
seventeen parts are determined, and in the second one the
cross sections with experimental selection criteria are be-
ing determined. The generator simulates an event accord-
ing to specific kinematics for each cross section. The weight
of event is determined as the ratio of a given cross section
(one from seventeen) to the total one. The kinematic pa-
rameters of the simulated events are stored in the proper
histograms, which can be compared with experimental
distributions.
Numerous tests have been performed for the CMS en-

ergy of 900MeV. The cross section dependence on the aux-
iliary parameter ∆ε is shown in Fig. 2 after integration over
the remaining kinematic variables. It is seen that the cross

Fig. 2. The cross section dependence on the auxiliary param-
eter ∆ε. Parameters and selection cuts are given in text
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Fig. 3. The cross section dependence on the auxiliary parame-
ter θ0 after integration over the remaining kinematic variables

section variations are inside the claimed precision while
∆ε changes by a factor of 104. The cross section varia-
tions with an auxiliary parameter θ0 do not exceed ±0.1%
level Fig. 3. From that certainly follows that the cross sec-
tion stability to the auxiliary parameters∆ε and θ0 at least
is not worse than 0.1%.
Comparison of different kinematic distributions simu-

lated by the MCGPJ generator and BHWIDE [12] was per-
formed. The distributions over the parameters ∆θ = θ1+
θ2−π and ∆φ = |φ1−φ2|−π are plotted in Figs. 4 and 5.
Good agreement is seen while ∆θ and ∆φ vary in the wide
range. The asymmetric shape of the distribution on ∆φ is
due to the specific kinematics of the events, when photon
and e+e− pair fly in diametrically opposed directions. The
cross section for such kinematics has been enhancement,
which visualizes as a shape asymmetry of the distribution.
The event distributions produced by both generators

are presented in Fig. 6 as a function of the missing energy

Fig. 4. The acollinearity polar angle ∆θ distribution. The solid
line is for MCGPJ code, the dashed line for BHWIDE

Fig. 5. The acollinearity azimuthal angle ∆φ distribution. The
solid line is for MCGPJ code, the dashed line for BHWIDE

(εmis. = 2ε− ε1− ε2). Both distributions are close to each
other except for the energy region where soft and hard
photons are merged. A visible bump is observed in this
point. This bump originates from a slightly different de-
pendence on the cutoff energy of both the compensators
and the cross section with one hard photon. The cut on the
acollinearity, ∆θ ∼ 0.25 rad, is equivalent to the missing
energy∼ 100MeV, that is rather far from the cutoff energy,
∆ε∼ 7MeV. As a result, the contribution to the total cross
section connected with these spurious features is negligible.
The relative difference of the cross sections, presented

in Fig. 7, calculated by the MCGPJ code and BHWIDE is
less than 0.1% for the VEPP-2M energy range. This differ-
ence versus the acollinearity angle ∆θ is plotted in Fig. 8.
One can see that the size and sign of the difference de-
pend on the particular choice of ∆θ. The reason of the
difference, about ∼ 0.5% for ∆θ ∼ 0.05 rad, arises from the

Fig. 6. The distribution of events as a function of the missing
energy radiated by electrons and positrons. The solid line is for
MCGPJ code, the dashed line for BHWIDE
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Fig. 7. The relative difference of cross sections calculated by
the MCGPJ code and BHWIDE as a function of the CMS en-
ergy

Fig. 8. The relative difference between cross sections calcu-
lated by the MCGPJ code and BHWIDE versus the acollinear-
ity angle |∆θ|

fact that all photons (except one in our code) are emitted
strongly along the motion of electrons (positrons) whereas
in BHWIDE they have some angular distribution. The dif-
ference of ∼ 0.3% for the large acollinearity angles |∆θ| ∼
1 rad is due to the fact that the BHWIDE code simulates
one hard photon only. It is worth noticing the MCGPJ
code describes the shape of the tails of the different kine-
matic distributions a bit more correctly and, as a result,
it is preferable for applications when soft selection criteria
are used.
It is important to reliably estimate the total theoretical

precision of this approach. In order to quantify the theoret-
ical error, an independent comparison has been performed
with the generator based on [7], where O(α) QED correc-
tions are treated exactly. It was found that the relative
difference of the cross sections is more than 1% for small

Fig. 9. The relative difference between cross sections calcu-
lated by the MCGPJ code and the generator based on [7] versus
the acollinearity angle |∆θ|

acollinearity angles ∆θ < 0.1 rad, see Fig. 9, and it is less
than ∼ 0.2% for acollinearity angles ∼ 0.25 rad. From this
it immediately follows that the radiation of two and more
photons (jets) in the collinear region contributes to the
cross section by an amount of ∼ 0.2% only. Therefore, the
theoretical precision of the Bhabha cross section with RC
is certainly better than ∼ 0.2% for our selection criteria.
The EM calorimeter of the CMD-2 detector allows

one to separate Bhabha scattering events from other ones
with a high confidence level [3]. The distributions in the
acollinearity angles ∆θ and ∆φ are presented in Figs. 10
and 11. To increase the experimental statistics, all the
CMD-2 data at energies greater than 1040MeV are col-
lected in these plots. The momentum and angular reso-
lutions and the interaction with the detector material were
added to the kinematic parameters of the simulated events.

Fig. 10. The acollinearity angle ∆θ distribution in the scat-
tering plane. The solid line is for simulation, the histogram for
experiment
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Fig. 11. The acollinearity angle ∆φ distribution in the azi-
muthal plane. The solid line is for simulation, the histogram for
experiment

The histograms were fitted by two Gaussian functions.
Their relativeweights andwidthswere fit parameters.Good
agreement between experiment and simulation can be seen.
The agreement between experiment and simulation be-

comes significantly worse when the MC generator based
on [7] with O(α) corrections is used. It is seen in Figs. 12
and 13 where two-dimensional plots are presented. The
points in these plots correspond to the electron and
positron energies. Different population of events is ob-
served far aside from the area where semi-elastic events
are concentrated. About ∼ 1% events have correlated low
energies and they are distributed predominantly along
a corridor which extends from the right upper to the
left bottom corner of this plot. The appearance of these
events is due to the simultaneous radiation of two jets

Fig. 12. Two-dimensional plot of the simulated events
(MCGPJ). The points in this plot correspond to the elec-
tron and positron energies. The influence of the condition
∆θ < 0.25 rad can be seen from an arc-like smooth border

Fig. 13. Two-dimensional plot of the simulated events. The
generator is based on [7]. The points in this plot correspond to
the electron and positron energies. The condition ∆θ < 0.25 rad
divides the plot into two parts – with and without events

with close energies along either the initial or final par-
ticles. The condition p⊥1,2 > 90MeV/c is very soft and only

owing to this fact the integrated cross sections are equal
to each other within ∼ 0.2%. If p⊥1,2 is about ∼ 220MeV/c,

the relative difference increases up to ∼ 1%; see Fig. 14.
For the values p⊥1,2 higher than 350MeV/c the difference

changes sign and grows. The cross section with photon jets
becomes smaller than with one photon under the condition
p⊥1,2 > 350MeV/c. This feature has a simple explanation.

The distribution width of semi-elastic events in the first
plot is broader than for the second one due to radiation
of many soft photons and, as a result, these events are
smeared more broadly near the peak area.

Fig. 14. The difference between cross sections as a function of
the cut imposed on the transverse momenta of final particles
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3 Monte-Carlo generator for the production
of muon pairs

The same approach was used to create the MC genera-
tor to simulate production of muon pairs in the reaction
e−(z1p−)+e

+(z2p+)→ µ−(p1)+µ+(p2), when initial par-
ticles radiate some energy by emission of photon jets in the
collinear region. According to [8] the boosted Born cross
section modified by the vacuum polarization effects in the
photon propagator reads

dσ̃e
+e−→µ+µ−

0 (z1, z2)

dΩ1
=
α2

4s

1

| 1−Π(z1z2s) |2

×
y1
[
z21(Y1−y1c1)

2+ z22(Y1+y1c1)
2+8z1z2m

2
µ/s
]

z31z
3
2

[
z1+ z2− (z1− z2)c1Y1/y1

] ,

(15)

where y21,2 = Y
2
1,2−4m

2
µ/s; Y1,2 = ε1,2/ε are the muon rela-

tive energies; z1,2 = 1−x1,2, x1,2 = ω1,2/ε are the relative
energies of photon jets; c1 = cos θ1, and θ1 is the polar angle
of the negativemuon. The energy-momentum conservation
law,

z1+ z2 = Y1+Y2 ,

z1− z2 = y1c1+y2c2 ,

y1

√
1− c21 = y2

√
1− c22 ,

allows one to determine Y1, Y2 and the positron polar angle
θ2 (c2 = cos θ2):

Y1 =
2m2µ
s

×
(z2− z1)c1

z1z2+[z21z
2
2− (m

2
µ/s)((z1+ z2)

2− (z1− z2)2c21)]
1/2

+
2z1z2

z1+ z2− c1(z1− z2)
. (16)

The charge-even part of the cross section in the first order
in α comes from one-loop virtual (V) and soft (S) radiative
corrections and according to [13] is given by

dσS+Veven

dΩ1
=
dσ̃e

+e−→µ+µ−

0 (1, 1)

dΩ1

2α

π
(Ae+Aµ) ,

Ae = (L−1) ln
∆ε

ε
+
3

4
(L−1)+

π2

6
−
1

4
,

Aµ =

(
1+β2

2β
ln
1+β

1−β
−1

)
ln
∆ε

ε
+Kµeven .

(17)

The expression for the quantity Kµeven was derived in [14]
and reads

Kµeven =−1+ρ

(
1+β2

2β
−
1

2

+
1

4β

)
+ln

1+β

2

(
1

2β
+
1+β2

β

)

−
1−β2

2β

lβ

2−β2(1− c21)
+
1+β2

2β

[
π2

6

+2Li2

(
1−β

1+β

)
+ lβ ln

1+β

2β2

]
,

lβ = ln
1+β

1−β
,

ρ= ln
s

m2µ
,

L= ln
s

m2e
,

Li2(x) ≡−

x∫
0

dt

t
ln(1− t) . (18)

In the ultra-relativistic limit (β→ 1) the quantityAµ takes
the same form as for electrons:

Aµ = (Lµ−1) ln
∆ε

ε
+
3

4
(Lµ−1)+

π2

6
−
1

4
. (19)

The charge-odd part of the cross section comes from the in-
terference of the Born amplitude with box-type diagrams
as well as with amplitudes of soft photon emission by initial
and final particles and is given by [8, 14]

dσS+Vodd

dΩ1
=
dσe

+e−→µ+µ−

0 (1, 1)

dΩ1

2α

π

×

(
2 ln
∆ε

ε
ln
1−βc1
1+βc1

+Kµodd

)
,

Kµodd =
1

2
l2−−L−(ρ+ l−)+Li2

(
1−β2

2(1−βc1)

)

+Li2

(
β2(1− c21)

1+β2−2βc1

)

−

1−β2∫
0

dx

x
f(x)

(
1−
x(1+β2−2βc1)

(1−βc1)2

)− 12

+
1

2−β2(1− c21)

×

{
−
1−2β2+β2c21
1+β2−2βc1

(ρ+ l−)−
1

4
(1−β2)

×

[
l2−−2L−(l−+ρ)+2Li2

(
1−β2

2(1−βc1)

)]

+βc1

[
−
ρ

2β2
+

(
π2

12
+
1

4
ρ2
)(
1−
1

β
−
β

2
+
1

2β3

)

+
1

β
(−1−

β2

2
+
1

2β2
)

(
ρ ln
1+β

2
−2Li2

(
1−β

2

)

−Li2

(
−
1−β

1+β

))
−
1

2
l2−+L−(ρ+ l−)

−Li2

(
1−β2

2(1−βc1)

)]}
− (c1→−c1) , (20)

f(x) =

(
1

√
1−x

−1

)
ln

√
x

2
−

1
√
1−x

ln
1+
√
1−x

2
,
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l− = ln
1−βc1
2

, L− = ln

(
1−

1−β2

2(1−βc1)

)
.

For the ultra-relativistic limit the same result as in [14] is
obtained.
The cross section of muon pair production with one

hard photon emission is studied in detail elsewhere [8, 13].
This cross section in the differential form, keeping the rel-
evant information about the kinematics of final particles,
can be written as

dσe
+e−→µ+µ−γ
hard =

α3

2π2s2
Re
+e−→µ+µ−γ
hard

×
sβ1dΩ1xdxdΩγ

4[2−x(1− cosψ/β1)]
, (21)

where β1 is the velocity of the negative muon. The quantity

Re
+e−→µ+µ−γ
hard consists of three terms and represents the
cross section with one hard photon emitted by the initial
and final particles as well as their interference:

Re
+e−→µ+µ−γ
hard =

s

16(4πα)3

∑
spins

|M |2 =Ree+Reµ+Rµµ ,

(22)

Ree =
1

|1−Π(s1)|2

[
C
s

χ−χ+
+
m2µ

s21
∆s1s1

−
m2e
2χ2−

(t21+u
2
1+2m

2
µs1)

s21

−
m2e
2χ2+

(t2+u2+2m2µs1)

s21

]
,

Reµ =Re
1

(1−Π(s1))(1−Π(s))∗

×

[
C(

u

χ−χ
′
+

+
u1

χ+χ
′
−

−
t

χ−χ
′
−

−
t1

χ+χ
′
+

)

+
m2µ
ss1
∆ss1

]

Rµµ =
1

|1−Π(s)|2

[
s1

χ′−χ
′
+

C+
m2µ
s2
∆ss

]
,

C =
u2+u21+ t

2+ t21
4ss1

,

∆s1s1 =
(t+u)2+(t1+u1)

2

2χ−χ+
,

∆ss =−
u2+ t21+2sm

2
µ

2(χ′−)
2

−
u21+ t

2+2sm2µ
2(χ′+)

2

+
(ss1− s2+ tu+ t1u1−2sm2µ)

χ′−χ
′
+

,

∆ss1 =
s+ s1
2

(
u

χ−χ
′
+

+
u1

χ+χ
′
−
−

t

χ−χ
′
−

−
t1

χ+χ
′
+

)
+
2(u− t1)

χ′−
+
2(u1− t)

χ′+
.

The Mandelstam variables and χ±, χ
′
± are defined as for

the electrons. Similar to the Bhabha cross section, the mas-

ter formula describing the process of muon pair production
reads [8]

dσe
+e−→µ+µ−+nγ

dΩ1
=

1∫
0

1∫
0

dx1dx2D(z1, s)D(z2, s)

×
dσ̃e

+e−→µ+µ−

0 (z1, z2)

dΩ1

×
(
1+
2α

π
K̃
)
Θ(cuts)

+
α

π

1∫
∆

dx1
x1

[(
z1+

x21
2

)
ln
θ20
4
+
x21
2

]

×
dσ̃e

+e−→µ+µ−

0 (z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2
x2

[(
z2+

x22
2

)
ln
θ20
4
+
x22
2

]

×
dσ̃e

+e−→µ+µ−

0 (1, z2)

dΩ1
Θ(cuts)

+
α3

2π2s2

∫

k0>∆ε
θγ>θ0

Re
+e−→µ+µ−γ
hard

×
sβ1xdxdΩγ

4[2−x(1− cosψ/β1)]
Θ(cuts)

+
2α

π

[
1+β2

2β
ln
1+β

1−β
−1

+2 ln
1−βc1
1+βc1

]
ln(
∆ε

ε
)

×
dσ̃e

+e−→µ+µ−

0 (1, 1)

dΩ1
Θ(cuts) ,

(23)

where K̃ = π2/6−1/4+Kµeven(s̃, θ̃1)+K
µ
odd(s̃, θ̃1) and θ̃1

is the polar angle of the negative muon in the CMS frame.
The master formula presented above provides within the
scope of the discussion the intended cross section accuracy
∼ 0.2%.
The integration limits of the first term in (23) were di-

vided into two parts as for the electrons. A two-fold inte-
gral splits into four separate contributions. Those of them
which describe one photon jet radiation are combined in
a proper way with two compensators in the master for-
mula. All other steps to construct the MC generator to
simulate production of a muon pair are similar to that as
for electrons and can be found in [16].
Numerical comparisons with the KKMC [15] gener-

ator have been performed. The theoretical accuracy of
the formulae on which KKMC is based is about ∼ 0.1%.
The existing code in KKMC does not provide the correct
description of vacuum polarization effects in the photon
propagator at low energies, so they were switched off in
both generators. The relative difference between cross sec-
tions calculated with the MCGPJ generator and KKMC in
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Fig. 15. The relative difference between the cross sections cal-
culated by the MCGPJ code and KKMC versus the CMS en-
ergy

the VEPP-2M energy range is presented in Fig. 15. Good
agreement at the level of our precision,±0.2%, is observed.
In the low energy range, the momentum resolution

of the CMD-2 detector is sufficient to distinguish pions,
muons and electrons. Thus we have a direct way to com-
pare the number of selected muons to that of electrons di-
vided by the ratio of the theoretical cross sections, σ(ee→
µµ)/σ(ee→ ee) and thus check the theoretical precision of
the formulae with RC from experiment. The results for this
double ratio are presented in Fig. 16. One can see that a de-
viation from unity of the double ratio on average does not
exceed 1.4% with statistical and systematic errors about
∼ 1.5% and ∼ 0.7%, respectively. The scarce experimental
statistics in this energy range does not allow one to make
the comparison with better accuracy.

Fig. 16. The ratio of the number of selected muons to that of
electrons divided by the ratio of the corresponding theoretical
cross sections

4 Monte-Carlo generator for production
of pion pairs

The same ideas as for muons were applied here to construct
the master formula to the processes e+e−→ π+π−(nγ),
K+K−(nγ), KSKL(nγ), assuming that pseudo-scalar
mesons are point-like objects. The enhanced contributions
to the cross section, coming from the collinear region, are
accounted for by means of the SF formalism. The one-
loop virtual corrections, radiation of soft as well as one
hard photon, are taken into account in the first order of α
exactly. The effects of the vacuum polarization are not in-
cluded into the formulae presented below. In this case we
deal with the so-called dressed cross section, when the dy-
namics of the pions’ strong interaction is encoded in the
form factor properties. But the Coulomb interaction in the
final state should be included into RC to eliminate electro-
magnetic corrections.
According to the papers [9, 16] the boosted Born cross

section is given by the expression

dσ̃e
+e−→π+π−
0 (z1, z2)

dΩ1
=
α2

4s

(Y 21 −m
2
π/ε

2)3/2

z21z
2
2

×
(1− c21)|Fπ(sz1z2)|

2

z1+ z2+(z2− z1)(1−m2π/(ε
2Y 21 ))

−1/2c1
, (24)

where the z1,2 are the energy fractions of the electron and
positron after radiation of photon jets in the collinear re-
gion, and |Fπ(sz1z2)|2 is the pion form factor squared,
c1 = cos θ1, θ1 is the polar angle between the directions of
the momentum of the negative pion and the electron beam.
The energy fractions Y1,2 of the final pions and the polar
angle of the positive pion, θ2, can be found from the same
kinematic relations as for the muons.
The charge-even part of the cross section due to radia-

tion of soft and virtual photons [17, 18] can be written in
a convenient way as in [9]:

dσS+Veven

dΩ1
=
dσe

+e−→π+π−
0 (1, 1)

dΩ1

2α

π
(Ae+Aπ) ,

Ae = (L−1) ln
∆ε

ε
+
3

4
(L−1)+

π2

6
−
1

4
,

Aπ =

(
1+β2

2β
ln
1+β

1−β
−1

)
ln
∆ε

ε
+Kπeven .

(25)

The expression for the quantity Kπeven can be found
in [9, 18]. We have

Kπeven =−1+
1−β

2β
ρ+
2+β2

β
ln
1+β

2
+
1+β2

2β

×

[
ρ+
π2

6
+ lβ ln

1+β2

2β2
+2Li2

1−β

1+β

]
. (26)

The charge-odd part of the differential cross section is the
interference result of the Born amplitude with those de-
scribing box-type diagrams and soft photons emission by
electrons and pions [19]. According to [9] the expression for
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the charge-odd part has the following form:

dσS+Vodd

dΩ1
=
dσe

+e−→π+π−
0 (1, 1)

dΩ1

2α

π

×

(
2 ln
∆ε

ε
ln
1−βc1
1+βc1

+Kπodd

)
, (27)

whereKπodd, in its turn, is equal to

Kπodd =
1

2
l2−−Li2

(
1−2βc1+β2

2(1−βc1)

)
+Li2

(
β2(1− c21)

1−2βc1+β2

)

−

1−β2∫
0

dx

x
f(x)

(
1−
x(1−2βc1+β2)

(1−βc1)2

)− 12

+
1

2β2(1− c21)

{[
1

2
l2−− (L+ l−)L−

+Li2

(
1−β2

2(1−βc1)

)]
(1−β2)

+ (1−βc1)

[
−l2−−2Li2

(
1−β2

2(1−βc1)

)

+2(L+ l−)L−−
(1−β)2

2β

(
1

2
L2+

π2

6

)

+
1+β2

β

(
L ln

2

1+β
−Li2

(
−
1−β

1+β

)

+2Li2

(
1−β

2

))]}
− (c1→−c1) , (28)

f(x) =

(
1

√
1−x

−1

)
ln

√
x

2
−

1
√
1−x

ln
1+
√
1−x

2
,

l− = ln
1−βc1
2

, L− = ln

(
1−

1−β2

2(1−βc1)

)
.

The cross section of pion pair production accompanied by
hard photon emission can be presented in the following
form [9]:

dσe
+e−→π+π−γ
hard

dΩ1
=
α3

32π2s
Re
+e−→π+π−γ
hard

×
sβ1xdxdΩγ

4[2−x(1− cosψ/β1)]
. (29)

The quantity Re
+e−→π+π−γ
hard contains the terms describing

initial and final state radiation and their interference:

Re
+e−→π+π−γ
hard =Ree+Rππ+Reπ ,

Ree = |Fπ(s1)|
2

{
A
4s

χ−χ+
−
8m2e
s21

(
t1u1
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+
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+
8m2em
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+
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−
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,

A=
tu+ t1u1
ss1

,
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8
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×
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t
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(30)

The Mandelstam variables and χ±, χ
′
± are defined as for

the electrons. The expression for the master formula, de-
scribing the process of pion pair production with two com-
pensators, has a similar form as for the muons and reads

dσe
+e−→π+π−+nγ

dΩ1
=

1∫
0

1∫
0

dx1dx2D(z1, s)D(z2, s)

×
dσ̃e

+e−→π+π−
0 (z1, z2)

dΩ1

×

(
1+
2α

π
K̃

)
Θ(cuts)

+
α

π

1∫
∆

dx1
x1

[(
z1+

x21
2

)
ln
θ20
4
+
x21
2

]

×
dσ̃e

+e−→π+π−
0 (z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2
x2

[(
z2+

x22
2

)
ln
θ20
4
+
x22
2

]

×
dσ̃e

+e−→π+π−
0 (1, z2)

dΩ1
Θ(cuts)

+
α3

32π2s

∫

k0>∆ε
θγ>θ0

Re
+e−→π+π−γ
hard

×
sβ1xdxdΩγ

4[2−x(1− cosψ/β1)]
Θ(cuts)

+
2α

π

[
1+β2

2β
ln
1+β

1−β
−1

+2 ln
1−βc1
1+βc1

]
ln
∆ε

ε

×
dσ̃e

+e−→π+π−
0 (1, 1)

dΩ1
Θ(cuts), (31)
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where K̃ = π2/6− 1/4+Kπeven(s̃, θ̃1)+K
π
odd(s̃, θ̃1), θ̃1 is

the polar angle of the negative pion in the center-of-mass
system.
As well as for muons, the integration limits with

energy in the first term in (31) were again divided in
two parts. Two terms describing one photon jet radi-
ation are merged with two compensators. Comparison
with the BABAYAGA [20] generator was performed.
The theoretical accuracy of the formulae, used in the
BABAYAGA code, is about ∼ 1%. The current version of
the BABAYAGA code (3.5) does not include the FSR and
so this term was removed from our code (just for compari-
son). The difference of the cross sections calculated by the
MCGPJ generator and BABAYAGA is shown in Fig. 17
with the same selection criteria as for Bhabha scattering
events. A systematic shift between the cross sections is on
average about 1%, in agreement with the BABAYAGA
code precision; but for the lowest and highest energies the
agreement becomes worse.
The distributions of pion, muon and electron pairs as

a function of the momentum are presented in Fig. 18 at the
CMS energy of 390MeV for experimental and simulated
events. Momentum and angle resolutions, decays in flight,
interaction with the detector material and other important
factors were smeared with the parameters of the simulated
events to create events as close as possible to the real ones.
The histograms for each type of particle were fitted by two
Gaussian functions. Their relative weights and widths were
the free parameters of the fit. There is perfect agreement
between experiment and simulation as one can see.
The enveloping curve describes pretty well the shape of

the histograms both at the peaks and at the tails. It per-
mits one to determine the number of events inside each
histogram and to estimate the amount of the muons and
electrons under the pion peak and thereby to extract the
systematic error due to the events’ separation procedure.
The shape of the histograms peaks of the simulated

events is not described well if the MC generator based on

Fig. 17. The relative difference between the cross sections cal-
culated by the MCGPJ code and BABAYAGA versus the beam
energy

Fig. 18. The distribution of pion, muon and electron pairs as a
function of the momentum. The upper curve represents a com-
mon fit, the bottom curve mainly cosmic ray background

the formulae in the first order in α is used. The shape of
the histogram peak is mainly driven by the emission spec-
trum of soft photons and the apparatus resolution. Thus,
the number of events in the tail area is determined by the
peak shape, and hence the approach with photon jet radia-
tion is absolutely necessary.
TheMC generator simulating the production of charged

kaons is created similarly to that for the pions. The pion
mass mπ and form factor should be replaced in the above
expressions by the kaon ones. The cross section being mul-
tiplied by the exact Coulomb factor will interpolate the
energy dependence of the cross section from the threshold
production to the relativistic region. The exact expression
for the Coulomb factor was obtained by Sommerfeld and
Sakharov and reads

f(z) =
z

1− exp(−z)
− z/2, z =

2πα

v
, (32)

where v is the relative velocity of kaons. The term z/2 is
subtracted, because it is already included in the O(α) cor-
rections to the final state.
The MC generator simulating the production of neu-

tral kaons is significantly simpler since there is no Coulomb
interaction and photon emission in the final state.

The quantity R
e+e−→KLKSγ
hard , see (30), consists of one

term which describes the initial state radiation only and
the value K̃ is equal to π2/6−1/4.

5 Summary and concluding remarks

The MC generator for the processes e+e−→ e+e−, µ+µ−,
π+π−, K+K− and KLKS is described in detail. An ex-
tended treatment of radiative corrections is implemented
in the generator to get a high level of theoretical precision.
The current version of the program, Monte-Carlo Genera-
tor Photon Jets (MCGPJ), includes radiation effects in the
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first order in α exactly. The corrections deal with radiation
of a hard photon decomposed into the three parts which
describe initial and final state radiation and their interfer-
ence. All terms in the matrix elements which are propor-
tional to the muon or pion mass squared are kept. The en-
hanced contributions coming from the collinear region are
accounted for by means of the SF formalism. As a result,
the theoretical accuracy of the cross sections with RC is
estimated to be at∼ 0.2% level. It is better by at least a fac-
tor of two compared to the accuracy 0.5%–1% achieved
in earlier papers. Comparison with the well known codes
BHWIDE, KKMC and BABAYAGA shows a satisfactory
level of agreement for many distributions simulated by the
generators.
The shape of the distributions with acollinearity an-

gles ∆θ and ∆φ agrees with the CMD-2 experimental data.
The double ratio of the number of muon events to that of
electrons divided by the ratio of the theoretical cross sec-
tions was found to be 0.986± 0.014. The deviation from
unity is −1.4±1.4%. This is the first direct comparison of
the experimental cross sections with the theoretical calcu-
lation at the accuracy ∼ 1%. The comparison of momenta
distributions at the lowest energy point shows that only
the simulation with radiation of photon jets describes the
experimental spectra pretty well. Relying upon the above
sketched review, the main conclusion is that theoretical
predictions aiming at a O(0.1%) precision must include
contributions of both exact O(α) terms and all higher
order O(αnLn) corrections.
The theoretical uncertainties of the cross sections with

RC are determined by the unaccounted-for higher order
corrections and they are estimated to be at the ∼ 0.2%
level. Here, the main sources of uncertainties in the current
formulae are listed.

– The weak interaction contributions are omitted in our
approach. The numerical estimations show that for en-
ergies 2ε < 3 GeV these contributions do not exceed
0.1%.
– A part of the second order next-to-leading radiative
corrections proportional to (α/π)2L∼ 10−4 were omit-
ted. Among these contributions are the effect due to
double photon emission (one inside and one outside of
the narrow cone); and emission of soft or virtual pho-
ton simultaneously with radiation of one hard photon
at large angles. Even if we assume that a coefficient in
front of these terms will be of the order of ten, their con-
tribution cannot exceed ∼ 0.1%.
– The next source of uncertainties is related to the cal-
culation of the hadronic vacuum polarization contribu-
tion to the photon propagator. Numerical estimations
show that a systematic error of hadronic cross sections
of about 1% changes the cross section by less than
∼ 0.04%.
– The uncertainty of about 0.1% is related to the the-
oretical models which are used to describe the energy
dependence of the hadronic cross sections.
– In [21] it was concluded that the combined effect of
all the parametrically enhanced O(α2) corrections can
be numerically limited by 2.0×10−4 for near threshold

production. The magnitude of this contribution slowly
decreases with the final particle velocity β and therefore
these corrections are beyond the intended accuracy.
– The last source of uncertainty is mainly driven by the
collinear kinematic approximation. Several terms pro-
portional to (α/π)θ20 and (α/π)(1/γθ0)

2 were omitted.
Numerical estimations show that the contribution of
these factors is about∼ 0.1%.

Considering the uncertainty sources mentioned above as
independent, we can conclude that the total systematic
error of the cross sections with RC is less than 0.2%. An
indirect confirmation of the correct evaluation of the accu-
racy is the comparison of cross sections with RC calculated
in the first order of α only. The corresponding difference
does not exceed 0.2%. From that it follows that higher
order enhanced contributions, coming from collinear re-
gions with emission of two and more photons, contribute to
the cross section by an amount of ∼ 0.2% only for our se-
lection criteria. Since the accuracy of this contribution is
certainly known better than 100%, the systematic theoret-
ical uncertainty for the cross sections with RC is ∼ 0.2%.
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